Errata for Navigating the Factor Zoo: The Science of Quantitative Investing
Overview
This document captures all verified printing and content errors identified in _Navigating the Factor Zoo: The Science of Quantitative Investing_. It is maintained in the Fire Institute GitHub repository (https://github.com/fire-institute/fire) under docs/docs/errata.md
.
Structure of Entries
Each erratum follows this format:
Field | Description |
---|---|
Anchor | Unique Markdown heading used as the link target. |
Original | Verbatim the incorrect text, caption, or equation. |
Correction | The accurate replacement text, caption, or equation. |
Note | (Optional) Additional context or explanation. |
Submitting a New Error Report
To contribute:
- Search existing GitHub issues to avoid duplicates.
- Open a new issue with the title:
[Errata] Page <number> – brief description
- Fill in the template in the issue body:
**Page**: **Section or Heading**: **Original**: **Correction**:
- A maintainer will review, label it confirmed, and then add it here.
Table of Content
First Edition — Routledge (Hardcover & Paperback)
- Publisher: Routledge
- Publication Date: November 20, 2024 (Hardcover) / December 9, 2024 (Paperback)
- Formats: Hardcover (296 pp.) / Paperback (310 pp.)
- ISBN-10: 1032768436 (HC) / 103276841X (PB)
- ISBN-13: 978-1032768434 (HC) / 978-1032768410 (PB)
Page 66 – Equation 3.19
Original
In the limit of $n \rightarrow \infty$,$R V_{t}^{+} \rightarrow \text{ }{t-1}^{t} \sigma{s}^{2} ds+\sum_{t-1 \leq \tau \leq t} J_{\tau J_{\tau}>0 }^{2} $, $ R V_{t}^{-} \rightarrow \int_{t-1}^{t} \sum_{s}^{2} d s+\sum_{t-1 \leq \tau \leq t} J_{\tau J_{\tau}0 }^{2} $, and,
\[S J_{t}=\sum_{t-1 \leq \tau \leq t} J_{\tau J_{\tau}>0 }^{2} -\sum_{t-1 \leq \tau \leq t} J_{\tau J_{\tau} 0}^{2}\]
Correction
In the limit of $n\to \infty$, $RV_t^+ \to \int {t- 1}^t\sigma _s^2ds+ \sum{t- 1\leq \tau \leq t}J_\tau^2 \mathbb{I} {J\tau > 0}$, $RV_t^- \to \int_{t- 1}^t \sigma_s^2 ds + \sum_{t-1\leq\tau\leq t}J_\tau^2\mathbb{I}{J\tau<0} $, and,
\[SJ_t = \sum_{t- 1\leq \tau \leq t}J_\tau^2 \mathbb{I} _{J_\tau > 0}-\sum_{t-1\leq\tau\leq t}J_\tau^2\mathbb{I}_{J_\tau<0}.\]
Note
Inserted the missing integral symbol, properly representing the continuous term as $\int_{t-1}^t\sigma_s^2\,ds$. Replaced the ambiguous jump‐index notation with indicator functions $\mathbb{I}{J\tau>0}$ and $\mathbb{I}{J\tau<0}$ to clearly separate positive and negative jumps.